Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
PLoS One ; 19(5): e0300862, 2024.
Article in English | MEDLINE | ID: mdl-38739614

ABSTRACT

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Subject(s)
Charadriiformes , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , Brazil , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Charadriiformes/virology , Genome, Viral , Birds/virology
2.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664384

ABSTRACT

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Subject(s)
Chiroptera , Ducks , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Chiroptera/virology , Humans , Ferrets/virology , Female , Male , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Mice , Ducks/virology , Virus Replication , Influenza, Human/virology , Influenza, Human/transmission , Lung/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Neuraminidase/metabolism
3.
Annu Rev Virol ; 10(1): 1-23, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774126

ABSTRACT

From a farming family of 13 children in New Zealand, I graduated with a Master of Science degree in microbiology from the University of Otago (Dunedin, Otago, New Zealand). I established the first veterinary virology laboratory at Wallaceville Animal Research Station. I subsequently completed my PhD degree at Australian National University (Canberra, Australia) and a postdoctoral fellowship at the University of Michigan (Ann Arbor, Michigan). While in New South Wales, Australia, a walk on a beach littered with dead mutton birds (shearwaters) with Dr. Graeme Laver led to the surveillance of influenza in seabirds on the Great Barrier Reef Islands and my lifelong search for the origin of pandemic influenza viruses. Subsequent studies established that (a) aquatic birds are a natural reservoir of influenza A viruses, (b) these viruses replicate primarily in cells lining the intestinal tract, (c) reassortment in nature can lead to novel pandemic influenza viruses, and (d) live bird markets are one place where transmission of influenza virus from animals to humans occurs.


Subject(s)
Influenza A virus , Influenza in Birds , Influenza, Human , Orthomyxoviridae , Animals , Child , Humans , Influenza in Birds/epidemiology , Pandemics , Australia/epidemiology , Influenza A virus/genetics , Phylogeny
4.
Emerg Microbes Infect ; 12(2): e2252510, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37622753

ABSTRACT

Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N7 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Bangladesh/epidemiology , Birds , Ducks , Poultry , Genotype , Phylogeny
5.
Sci Rep ; 13(1): 7912, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193732

ABSTRACT

Avian influenza virus (AIV) remains a global threat, with waterfowl serving as the primary reservoir from which viruses spread to other hosts. Highly pathogenic avian influenza (HPAI) H5 viruses continue to be a devastating threat to the poultry industry and an incipient threat to humans. A cross-sectional study was conducted in seven districts of Bangladesh to estimate the prevalence and subtypes (H3, H5, and H9) of AIV in poultry and identify underlying risk factors and phylogenetic analysis of AIVs subtypes H5N1 and H3N8. Cloacal and oropharyngeal swab samples were collected from 500 birds in live bird markets (LBMs) and poultry farms. Each bird was sampled by cloacal and oropharyngeal swabbing, and swabs were pooled for further analysis. Pooled samples were analyzed for the influenza A virus (IAV) matrix (M) gene, followed by H5 and H9 molecular subtyping using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Non-H5 and Non-H9 influenza A virus positive samples were sequenced to identify possible subtypes. Selected H5 positive samples were subjected to hemagglutinin (HA) and neuraminidase (NA) gene sequencing. Multivariable logistic regression was used for risk factor analysis. We found that IAV M gene prevalence was 40.20% (95% CI 35.98-44.57), with 52.38%, 46.96%, and 31.11% detected in chicken, waterfowl, and turkey, respectively. Prevalence of H5, H3, and H9 reached 22%, 3.4%, and 6.9%, respectively. Waterfowl had a higher risk of having AIV (AOR: 4.75), and H5 (AOR: 5.71) compared to chicken; more virus was detected in the winter season than in the summer season (AOR: 4.93); dead birds had a higher risk of AIVs and H5 detection than healthy birds, and the odds of H5 detection increased in LBM. All six H5N1 viruses sequenced were clade 2.3.2.1a-R1 viruses circulating since 2015 in poultry and wild birds in Bangladesh. The 12 H3N8 viruses in our study formed two genetic groups that had more similarity to influenza viruses from wild birds in Mongolia and China than to previous H3N8 viruses from Bangladesh. The findings of this study may be used to modify guidelines on AIV control and prevention to account for the identified risk factors that impact their spread.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Humans , Poultry , Influenza A Virus, H5N1 Subtype/genetics , Bangladesh/epidemiology , Phylogeny , Cross-Sectional Studies , Farms , Influenza A virus/genetics , Chickens , Animals, Wild
6.
Transbound Emerg Dis ; 69(6): e3436-e3446, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36217218

ABSTRACT

Wild aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). It is estimated that 100 million seabirds live in the Antarctic Peninsula and adjacent islands, regularly encountering migratory birds that use the islands to nest. Between 2010 and 2013, we collected samples from 865 seabirds in Elephant, King George and Livingston islands, around Antarctica Peninsula: chinstrap penguin (n = 143); gentoo penguin (n = 208); Adelie penguin (n = 46); brown skua (n = 90); Cape petrel (n = 115) and southern giant petrel (n = 263). Serum (n = 673) samples were analysed by competitive ELISA and swabs (n = 614) were tested by one step real-time RT-PCR for avian influenza virus (AIV). Sera from 30 chinstrap penguins, 76 brown skuas and a single Adelie penguin were seropositive for AIV. Thirteen swab samples were AIV positive by RT-PCR, and complete genome sequences of H6N8 AIVs isolated from brown skua and chinstrap penguin in 2011 were obtained. Phylogenetic analyses indicated that all gene segments of the H6N8 viruses were closely related to Argentinian and Chilean AIVs. The prevalence with which we identified evidence for AIVs infection in various Antarctic seabirds suggest viral circulation in Antarctic avifauna and interspecies viral transmission in the sub-Antarctic region.


Subject(s)
Charadriiformes , Influenza A virus , Influenza in Birds , Spheniscidae , Animals , Antarctic Regions , Influenza in Birds/epidemiology , Phylogeny , Animals, Wild , Influenza A virus/genetics , Chile
7.
J Virol ; 96(18): e0077622, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069546

ABSTRACT

The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.


Subject(s)
Avian Proteins , Influenza A virus , Influenza in Birds , Interferon-beta , Receptors, Retinoic Acid , Signal Transduction , Viral Nonstructural Proteins , Animals , Antiviral Agents/metabolism , Avian Proteins/metabolism , Ducks , Humans , Influenza A virus/genetics , Interferon Type I/metabolism , Interferon-beta/metabolism , Mice , Receptors, Retinoic Acid/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism
8.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: mdl-36146881

ABSTRACT

A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Dibenzothiepins , Endonucleases/genetics , Evolution, Molecular , Host Adaptation , Humans , Influenza in Birds/epidemiology , Mammals , Morpholines , Nucleotides , Phylogeny , Poultry , Pyridones , Triazines , Uganda/epidemiology , Virulence/genetics
9.
Sci Rep ; 12(1): 13083, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906292

ABSTRACT

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Subject(s)
Influenza A virus , Influenza in Birds , Animal Migration , Animals , Animals, Wild , Ducks , Humans , Influenza in Birds/epidemiology , Prevalence , United States/epidemiology
10.
PLoS Pathog ; 18(4): e1009973, 2022 04.
Article in English | MEDLINE | ID: mdl-35417497

ABSTRACT

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , North America/epidemiology
11.
J Virol ; 96(7): e0010022, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35254104

ABSTRACT

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Stability , Swine
12.
Transbound Emerg Dis ; 69(4): e605-e620, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34989481

ABSTRACT

From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Bangladesh/epidemiology , Chickens , Ducks , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N3 Subtype , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology , Wetlands
13.
Transbound Emerg Dis ; 69(2): 369-377, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33428819

ABSTRACT

Influenza A viruses (IAVs) and Newcastle disease viruses (NDVs) are major human and animal health threats with geographic differences in prevalence, characteristics and host populations. Currently, there is sparse information on IAVs and NDVs in avian species in South Africa. Because raptors feed on live wild birds which are the reservoir hosts of IAVs and NDVs, we considered them a good sentinel for surveillance. Therefore, in addition to other resident birds of prey, migratory Amur falcons (Falco amurensis) were screened for IAVs and NDVs. Oropharyngeal and cloacal samples were collected from raptor species at three sampling sites in KwaZulu-Natal Province and samples were screened for IAVs and NDVs using molecular and virus isolation methods. IAV-positive samples were further screened for the presence of H5, H7 and H9 viruses. A total of 14 samples from 11 birds (45.8% of all sampled birds) were IAV positive with Ct lower than 36 in duplicate tests. Five out of 24 birds (20.8%) were positive for IAV RNA in duplicate testing, albeit at low concentrations. Among raptor samples, three out of 24 birds (12.5%) were positive for IAVs with viral RNA detected in both cloacal and oropharyngeal swabs. One IAV-positive sample was also positive for H5 subtype (4.1%); all other samples were H5, H7 and H9 negative. Besides, all samples were NDV negative. Overall, our results support the development of more intensive and expanded influenza and other emerging virus studies in raptor species.


Subject(s)
Influenza A virus , Influenza in Birds , Raptors , Animals , Birds , Influenza A virus/genetics , South Africa/epidemiology
14.
Viruses ; 13(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34960626

ABSTRACT

Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.


Subject(s)
Ducks/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Reassortant Viruses/genetics , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Phylogeny
15.
Front Immunol ; 12: 786205, 2021.
Article in English | MEDLINE | ID: mdl-34804075

ABSTRACT

Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.


Subject(s)
Ducks/immunology , Gene Expression Regulation/immunology , Influenza in Birds/immunology , Influenza, Human/immunology , Virus Replication/immunology , Animals , Disease Reservoirs/virology , Ducks/genetics , Ducks/virology , Female , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza in Birds/genetics , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Male , Virus Replication/genetics
16.
Nat Microbiol ; 6(11): 1455-1465, 2021 11.
Article in English | MEDLINE | ID: mdl-34702977

ABSTRACT

Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized. Glycan-binding analyses showed stepwise changes in the haemagglutinin receptor-binding specificity of the EA swine influenza viruses-that is, from recognition of both α2,3- and α2,6-linked sialosides to recognition of α2,6-linked sialosides only; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein, which have been fixed since 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979-1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jumps through strategic coordination of surveillance and risk assessment activities.


Subject(s)
Adaptation, Physiological , Influenza A Virus, H1N1 Subtype/physiology , Influenza in Birds/virology , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Animals , Birds , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza in Birds/transmission , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Phylogeny , Polysaccharides/chemistry , Polysaccharides/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Swine , Swine Diseases/metabolism , Swine Diseases/transmission , Virus Replication
17.
Phytomedicine ; 91: 153668, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34385093

ABSTRACT

BACKGROUND: Aloe vera is a functional food with various pharmacological functions, including an immune-modulating effect. Until now, A. vera has never been studied as an adjuvant in influenza vaccine, and its effects on upper respiratory tract infection (URI) are unknown. PURPOSE: The objective of our study was to investigate the effect of processed A. vera gel (PAG) on immunogenicity of quadrivalent inactivated influenza vaccine and URI in healthy adults. STUDY DESIGN: A randomized, double-blind, placebo-controlled clinical trial was performed. METHODS: This study was conducted in 100 healthy adults at a single center from September 2017 to May 2018. Subjects were randomly divided into a PAG group (n = 50) and a placebo group (n = 50). The enrolled subjects were instructed to ingest the study drug for 8 weeks. The participants received a single dose of quadrivalent inactivated influenza vaccine after taking the study drug for the first 4 weeks of the study. The primary endpoint was seroprotection rate against at least one viral strain at 4 weeks post-vaccination. Other outcomes were seroprotection rate at 24 weeks post-vaccination, seroconversion rate, geometric mean fold increase (GMFI) at 4 and 24 weeks post-vaccination, seroprotection rate ratio and geometric mean titer ratio (GMTR) at 4 weeks post-vaccination between PAG and placebo groups, and incidence, severity, and duration of URI. RESULTS: The European Committee for proprietary medicinal products (CPMP) evaluation criteria were met at least one in the PAG and placebo groups for all strains. However, there was no significant difference in the seroprotection rate at 4 weeks post-vaccination against all strains in both PAG and placebo groups. Among secondary endpoints, the GMFI at 4 weeks post-vaccination for the A/H3N2 was significantly higher in the PAG than in placebo group. The GMTR as adjuvant effect was 1.382 (95% CI, 1.014-1.1883). Kaplan-Meier curve analysis showed a reduction in incidence of URI (p = 0.035), and a generalized estimating equation model identified a decrease in repeated URI events (odds ratio 0.57; 95% CI, 0.39-0.83; p = 0.003) in the PAG group. CONCLUSIONS: Oral intake of PAG did not show a significant increase in seroprotection rate from an immunogenicity perspective. However, it reduced the number of URI episodes. A well-designed further study is needed on the effect of PAG's antibody response against A/H3N2 in the future.


Subject(s)
Adjuvants, Immunologic , Immunogenicity, Vaccine , Influenza Vaccines , Influenza, Human , Plant Preparations/chemistry , Adult , Double-Blind Method , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control
18.
Influenza Other Respir Viruses ; 15(6): 767-777, 2021 11.
Article in English | MEDLINE | ID: mdl-34323380

ABSTRACT

BACKGROUND: The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. OBJECTIVES: There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories-the most relevant age class. METHODS: We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. RESULTS: All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). CONCLUSIONS: Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Disease Outbreaks , Ducks , Humans , Influenza A Virus, H5N2 Subtype/genetics , Influenza in Birds/epidemiology , Poultry , Poultry Diseases/epidemiology
19.
Virology ; 557: 55-61, 2021 05.
Article in English | MEDLINE | ID: mdl-33667751

ABSTRACT

Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.


Subject(s)
Gene Library , Influenza Vaccines/immunology , Influenza, Human/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae/genetics , Pandemics/prevention & control , Universities , Animals , Fur Seals/virology , Horses/virology , Humans , Influenza, Human/virology , Orthomyxoviridae/isolation & purification , Phylogeny , Reassortant Viruses , Swine/virology
20.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32907981

ABSTRACT

The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


Subject(s)
Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Mammals/virology , Phylogeny , Poultry/virology , Animals , Bangladesh/epidemiology , Chickens , Ferrets , Genome, Viral , Genotype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A Virus, H9N2 Subtype , Influenza A virus/genetics , Influenza in Birds/pathology , Influenza in Birds/transmission , Lung/pathology , Mice , Pandemics , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Poultry Diseases/transmission , Poultry Diseases/virology , Reassortant Viruses/genetics , Viral Nonstructural Proteins/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...